
Retrieve and Refine: Exemplar-based Neural
Comment Generation

Bolin Wei
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

bolin.wbl@gmail.com

Yongmin Li
Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

liyongmin@pku.edu.cn

Ge Li∗

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

lige@pku.edu.cn

Xin Xia
Faculty of Information Technology

Monash University, Australia

xin.xia@monash.edu

Zhi Jin∗

Key Lab of High Confidence Software

Technology, MoE (Peking University)

Beijing, China

zhijin@pku.edu.cn

ABSTRACT

Code comment generation which aims to automatically generate

natural language descriptions for source code, is a crucial task in

the field of automatic software development. Traditional comment

generation methods use manually-crafted templates or information

retrieval (IR) techniques to generate summaries for source code.

In recent years, neural network-based methods which leveraged

acclaimed encoder-decoder deep learning framework to learn com-

ment generation patterns from a large-scale parallel code corpus,

have achieved impressive results. However, these emerging meth-

ods only take code-related information as input. Software reuse is

common in the process of software development, meaning that com-

ments of similar code snippets are helpful for comment generation.

Inspired by the IR-based and template-based approaches, in this

paper, we propose a neural comment generation approach where

we use the existing comments of similar code snippets as exemplars

to guide comment generation. Specifically, given a piece of code,

we first use an IR technique to retrieve a similar code snippet and

treat its comment as an exemplar. Then we design a novel seq2seq

neural network that takes the given code, its AST, its similar code,

and its exemplar as input, and leverages the information from the

exemplar to assist in the target comment generation based on the se-

mantic similarity between the source code and the similar code. We

evaluate our approach on a large-scale Java corpus, which contains

about 2M samples, and experimental results demonstrate that our

model outperforms the state-of-the-art methods by a substantial

margin.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416578

CCS CONCEPTS

• Computing methodologies → Artificial intelligence; •

Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Comment generation, Deep learning

ACM Reference Format:

Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and Refine:

Exemplar-based Neural Comment Generation. In 35th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE ’20), September

21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3324884.3416578

1 INTRODUCTION

Code comments provide a clear natural language description for

a piece of the source code, which can help software developers

understand programs quickly and correctly [37]. Previous studies

showed that during software maintenance, program comprehen-

sion takes more than half of the time [6, 9, 22, 44]. Although proper

comments are very helpful for software maintenance, they are ab-

sent or out-dated in many software projects [7]. On the other hand,

manually writing comments is very time-consuming and labor-

intensive, and the comments should be updated as the software

is upgraded. Therefore, automatic comment generation becomes

greatly crucial for software development and maintenance.

Creating manually-crafted templates is a common way to gener-

ate comments automatically [31, 37]. These methods defined differ-

ent templates for different types of programs to generate readable

text descriptions. Sridhara et al. [37] used Software Word Usage

Model and heuristics to select important code statements, defined

templates for each code statement, and generated corresponding

comments. Moreno et al. [31] predefined heuristic rules to extract

information from source code, and defined templates for different

types of information to help generate code summaries. Manually-

crafted templates are introduced in these approaches to extract key

information in the source code into comments, helping improve the

readability and comprehensibility of comments. However, defining

a template is a time-consuming task and requires extensive domain

knowledge. Also, different projects might use different kinds of

templates.

349

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416578&domain=pdf&date_stamp=2021-01-27

As an alternative, information retrieval (IR) techniques arewidely

used in automatic comment generation [8, 11, 42, 43]. Some re-

searchers used IR techniques to select terms from source code to

generate term-based comments [8, 11]. Haiduc et al. [11] applied

the Vector Space Model and Latent Semantic Indexing to retrieve

the appropriate terms, while Eddy et al. [8] introduced a hierarchi-

cal topic model for comment generation. Based on the idea that

software reuse is common [20, 21], other researchers leveraged code

clone detection techniques to detect similar code snippets and used

their corresponding comments for comment generation. Note that

similar code snippets can be retrieved from existing open-source

software repositories in GitHub or software Q&A sites such as

Stack Overflow [42, 43]. However, code snippets may contain some

information that is inconsistent with the content in comments of

their similar code snippets.

In recent years, more and more researchers have focused on

applying neural machine translation models for comment genera-

tion and viewed the process of generating comments from source

code as a language translation task (e.g., translating English to

German) [14, 16, 25]. These research works have adopted the main-

stream encoder-decoder framework of neural machine translation,

with source code as input and comments as output, and achieved

state-of-the-art performance on the comment generation. The main

difference between these works is the source code encoding meth-

ods. Iyer et al. [16] directly modeled the source code as a sequence of

tokens, while Hu et al. [14] used the traversal sequence of Abstract

Syntax Tree (AST) tokens as the model input. LeClair et al. [25]

integrated previous work and used two different ways to represent

source code. By virtue of the naturalness of the source code [2, 12],

these neural models can mine patterns for generating comments

from large corpora, but they only relied on source code information,

such as tokens or structures of source code, to create comments.

Note that these aforementioned comment generation methods

have their own advantages. The comments generated based on

the manually-crafted template methods are usually fluent and in-

formative; the IR-based methods can take advantage of tokens in

comments of similar code snippets; the neural-based methods can

learn the semantic connection between natural and programming

languages. Although the neural-based methods have achieved the

best performance [14, 16, 25], it tends to generate high-frequency

words in comments or "lose control" sometimes. For example, ac-

cording to LeClair et al.’s study [25], 21% comments in the test set

contain tokens with the frequency of less than 100. Conversely,

only 7% comments predicted by their proposed approach contain

tokens with the frequency of less than 100. Besides, more than two

thousand generated comments even do not have a normal end-of-

sequence </s> token. Specifically, the comments generated by the

neural model suffer a loss in readability and informativeness. This

phenomenon also appears in the use of neural models in machine

translation [23]. Therefore, we argue that it is not enough for the

neural model to generate comments only based on the source code.

Inspired by the template-based methods and IR-based methods,

we assume that comments of similar code snippets can be retrieved

as templates to guide the process of neural comment generation.

These templates, on the one hand, provide reference examples for

generating comments, and on the other hand, may contain low-

frequency words related to the source code, enhancing the neural

model’s ability to output low-frequency words. Considering the dif-

ferences between comments of similar code snippets and manually-

crafted templates, we call existing similar comments as exemplars.

Due to the strong pattern recognition capabilities of neural net-

works [2], we argue that encoder-decoder neural networks can be

combined with traditional template-based and IR-based methods.

Therefore, in this paper, we propose a novel comment genera-

tion framework, namely Re2Com, which consists of two modules:

a Retrieve module and a Refine module. In the Retrieve module,

given an input code snippet, we exploit IR techniques to retrieve

the most similar code snippet from a large parallel corpus of code

snippets and their corresponding comments, and treat the comment

of the similar code snippet as an exemplar. In the Refine module,

we apply a novel seq2seq neural network to learn patterns for gen-

erating comments. More specifically, the encoder takes the given

code snippet, the similar code snippet, and the exemplar as input,

and the decoder generates the token sequence of a comment. It is

worth noting that the similar code snippet retrieved may not be se-

mantically similar to the given code snippet. With the similar code

snippet as input, we can perform a semantic comparison through

a neural network and decide whether to use the exemplar based

on the degree of similarity. Furthermore, we adopt the attention

mechanism [3] to focus on the important parts of the input. In the

testing phase, given a new piece of code snippet without a com-

ment, our approach retrieves a similar code snippet and comment

pair from the corpus, utilizes the trained neural model to generate

an annotation, and selects tokens with the highest probability in

the vocabulary as the output. In this way, we leverage the advan-

tages of template-based and IR-based methods, and model them

into the neural network to improve the performance of comment

generation.

To train and evaluate our approach, we conduct experiments on

a real-world Java dataset. The dataset comes from the Sourcerer

repository1 and has been processed by LeClair et al. [25], including

removing duplicates, dividing into training, validation, and test

sets by projects. We employ the evaluation metrics BLEU score in

machine translation to evaluate the generated comments and also

perform a human evaluation. Experimental results show that our

method performs substantially better than the IR-based method and

outperforms the state-of-the-art approaches. Besides, experimental

results also show that our proposed modules are orthogonal to

other techniques, i.e., applying the Retrieve and Refine modules to

other neural models can improve the performance of the models.

The contributions of our work are shown as follows:

• We propose an exemplar-based neural comment generation

method, which combines traditional template-based and IR-

based methods with neural methods. We use comments of

similar code snippets as exemplars to assist in generating

comments.

• We conduct extensive experiments to evaluate our approach

on a large-scale dataset of Java methods. The experimental

results show that our Retrieve and Refine modules substan-

tially improve the performance of the neural model and

achieve the state-of-the-art results.

1https://www.ics.uci.edu/ lopes/datasets/

350

(a) An example of the retrieved similar code snippet and the

input code that are semantically similar.

(b) An example of retrieved similar code snippet and input

code that are not semantically similar.

Figure 1: Examples of exemplar-based comment generation.

Same tokens in ground truths, exemplars and predictions of

ast-attendgru aremarked in red. Same tokens (split on camel

case) in the input code and the similar code are also marked

in red.

Paper Organization. The rest of our paper is organized as follows.

Section 2 describes motivating examples. Section 3 presents our

proposed method. Section 4 and Section 5 describe the experiment

setup and results. Section 6 and Section 7 discuss some results and

describe the related work, respectively. Finally, Section 8 concludes

the paper and points out future directions.

2 MOTIVATING EXAMPLES

To explain why we use the comment of the retrieved similar code

snippet as an exemplar to guide the neural model to generate a

comment, we select two representative examples from the dataset

used in the evaluation, as shown in Figure 1. The input code and the

similar code are Java methods, and we also display the comments

predicted by the ast-attendgru model [25] for the input code. For

the input code, we leverage the open-source search engine Lucene2

to retrieve the most similar code snippet from the training corpus.

The retrieval technique is based on the lexical level similarity of

the source code, which will be explained in detail in Section 3.1.

Comment generation methods based on neural networks are

difficult to generate low-frequency tokens, whereas comments of

similar code snippets selected based on IR-based methods may

contain low-frequency tokens. For example, in Figure 1a, we can

observe that the specific phrase "sleeping on this condition variable"

appears in both the ground truth and the exemplar, meaning that

the input code and the similar code are semantically similar. In

addition, "sleeping" is a low-frequency token in the corpus, which

appears only 71 times. This is one of the reasons that the prediction

of the ast-attendgru ignores the token. Although the prediction

of the neural network is very close to the ground truth, it still

lacks some key information in the source code. Therefore, with the

exemplar as input to the neural model, the low-frequency tokens

will affect the comment generation process, and the neural network

will generate more informative comments.

However, it is not enough to only take an exemplar as additional

input, and the similar code retrieved by search engines is not nec-

essarily semantically similar, which is partly due to the fact that

there is no real source code reuse in the corpus, and partly due to

the limitations of the retrieval technique. For instance, in Figure 1b,

even though the input code and the similar code have some same

tokens (Tokens in the source code are split on camel case.), they are

not similar in semantics and behavior. In this case, the exemplar is

unsuitable for guiding the comment generation process of neural

networks. In contrast, ast-attendgru can generate a comment that is

close to the ground truth without the exemplar. For this reason, we

argue that it is necessary to use the similar code and the input code

as the input of the neural network at the same time, and calculate

the semantic similarity between the similar code and the input code

through the neural model, and determine the degree of using the

exemplar according to the semantic similarity. We design a novel

network structure to implement this idea, the details of which will

be described in Section 3.2.

In view of the many discussions on the effectiveness of deep

learning methods in the field of software engineering in recent

years [17, 27], we think that our study may be a good starting

point, combining traditional methods on specific tasks with deep

learning methods. Previous methods applied neural networks to

solve tasks in software engineering. Although specific input for

specific tasks was proposed, such as AST and control flow graphs,

previous researchers did not analyze the existing problems of deep

learning methods, e.g., overfitting (which tends to generate high-

frequency terms). Therefore, we believe that traditional methods

can be modeled into neural networks to improve performance.

2https://lucene.apache.org/

351

Figure 2: An overview of our approach for exemplar-based comment generation.

3 PROPOSED APPROACH

In this work, we propose the exemplar-based comment generation

method (Re2Com), modeling traditional IR-based and template-

based methods into the neural method. Different from the IR-based

methods, we employ a neural network tomodify the comment of the

similar code to conform to the semantics of the input code. Different

from the traditional template-based method, which requires manual

definition of the template, we treat the comment of the retrieved

code as an exemplar. Re2Com consists of two parts: a Retrieve

module and a Refine module. The Retrieve module uses the IR

technique to explore the similar code and extract its comment

from a parallel corpus, while the Refine module is a novel neural

network based on a seq2seq network with an attention mechanism

to generate a comment.

The overall framework is illustrated in Figure 2. The data pre-

processing step refers to the extraction, cleaning, and partition of

the dataset, and the training and test step refers to the Re2Com. We

use a massive training set as a retrieval corpus while training the

Refine module. The details of the Retrieve module are described

in Section 3.1. To take advantage of the structure information of

input code, we not only use the token sequence representation of

the code but also use the AST of the code as an input of the Refine

module. The details of this part will be described in Section 3.2.

3.1 Retrieve Module

Considering that software reuse is widespread in software devel-

opment, a similar code snippet usually has a similar comment.

Furthermore, as we analyzed in Section 2, there are some potential

problems with the previous neural-based methods. Therefore, we

argue that it is beneficial for the neural network to use an exemplar

as a reference when generating new comments. In practice, devel-

opers have similar experiences during software development. For

example, when adding a comment to a piece of source code, they

will refer to the comment of a similar code snippet. In our frame-

work, the goal of the Retrieve module is to retrieve similar code

from a retrieval corpus given the input code and treat its comment

as an exemplar.

To identify which piece of code in the retrieval corpus is most

similar to the input code, we need to define and calculate the simi-

larity between two pieces of code snippets. In this work, we chose

the similarity of the lexical level of the source code to measure the

code similarity, which was inspired by [20, 27, 35]. Specifically, we

adopt BM25 as the similarity evaluation metric, which is a bag-of-

words retrieval function to estimate the relevance of documents to

a given search query in IR. Given a query and a document, based on

TF-IDF, the BM25 scoring function calculates the term frequency

in the document of each keyword in the query and multiplies it by

the inverse document frequency of this term. The more relevant

two documents are, the higher the value of BM25 score is.

We leverage the open-source search engine Lucene to build our

Retrieve module. Since the size of the training set is quite large

(over 1.9M), we use it as the retrieval corpus, i.e., given the input

code snippet, we search for the most similar code from the training

set. The Retrieve module contains two parts, creating the index

and searching. We first tokenize the source code and comments,

usingWhitespaceAnalyzer in Lucene. Then we process each code

and comment pair into a document, add it to the index library, and

store it on disk. In the search phase, for each query code, we get

similar code sequences arranged in descending order of similarity,

choose the first-ranked similar code (when training, we choose the

second-ranked), and use its comment as an exemplar. We keep the

default settings of BM25 in Lucene.

3.2 Refine Module

Once we have an exemplar, a straightforward way is to treat it as

a comment for the input code. However, due to the non-existence

of software reuse or the limitation of retrieval technology, there

is a certain difference between the semantic of the exemplar and

the semantic of the input code. Especially, the similar code usually

contains information that is inconsistent with the input code, such

as different API calls and operations. Therefore, we use the exemplar

as a soft-template and refine it according to the semantic difference

between the source code and the similar code. Based on a widely

used seq2seq neural network [34, 38, 39], we design a novel network

structure that can learn the semantic similarity between the input

code and the similar code, refine the exemplar, and generate a

comment.

The Refine module contains three components, four encoders,

a decoder, and an attention mechanism module between encoders

and the decoder. Figure 3 illustrates the detailed Refine module.

3.2.1 Encoders. The four encoders take a token sequence of the

input code x, an AST traversal sequence of the input code t, a

352

token sequence of the similar code s and the exemplar r as input,

respectively. Among them, the input code x and its AST traversal

sequence t constitute the Input Code Representation in Figure 2.

We use the Structure-based Traversal (SBT) method [14] to obtain

the traversal sequence of AST to utilize the structural information

of the input code. There is no difference in the structure of the four

encoders. Take the input code x as an example.

The encoder of the input code first maps the one-hot embedding

of a token𝑤𝑖 into a word embedding 𝑥𝑖 :

𝑥𝑖 =𝑊 �
𝑒 𝑤𝑖 (1)

where𝑊𝑒 is a trainable embedding matrix. Then to leverage the con-

textual information, we use a bidirectional long short-term memory

(LSTM) [13] to process the sequence of the word embeddings, which

is explicitly designed to avoid the long-term dependency problem.

At each time step 𝑡 , the hidden state of the forward LSTM
−→
ℎ 𝑡 can

be represented by:

−→
ℎ 𝑡 = LSTM(𝑥𝑡 ,

−→
ℎ 𝑡−1) (2)

The hidden states of the backward LSTM can be obtained with

another LSTM. We concatenate hidden states from two directions

as the representation of the 𝑡-th token ℎ𝑡 in the input code, i.e.,

ℎ𝑡 = [
−→
ℎ 𝑡 ;

←−
ℎ 𝑡]. For the traversal sequence of AST, the similar code,

and the exemplar, we get their respective hidden states as ℎ𝑡 , ℎ𝑠 ,
and ℎ𝑟 in the same way. We denote the hidden states of tokens of
the input code as ℎ𝑥 . Note that in our experiments, we used four
separate LSTMs to encode different input sequences.

Then we explore the difference between the input code and

the similar code using a nonlinear sigmoid function to obtain a

semantic similarity score 𝑠𝑖𝑚:

𝑠𝑖𝑚 = 𝜎 (𝑊𝑠𝑖𝑚 [ℎ
𝑥
−1;ℎ

𝑠
−1]) (3)

where𝑊𝑠𝑖𝑚 are trainable weights, 𝜎 stands for the sigmoid func-
tion, and the index "-1" stands for the last hidden state. According to

previous work in the natural language processing community [3],

this structure performs well in the relevance measurement. A larger

value of the score 𝑠𝑖𝑚 (ranges from 0 to 1) indicates that the seman-

tics of the input code and the retrieved code is more similar.

3.2.2 Attention. Attention is a component that allows the decoder

to focus and place more "attention" on the relevant parts of the

input sequence as needed. It is useful to introduce this mechanism

into the comment generation model. For example, when developers

write comments, they use the token "get" because they notice the

token "return" in the source code. Therefore, we argue that different

parts of the comment are related to different parts of the source

code. Similarly, after the introduction of the exemplar, the decoder

can also focus on some parts of the exemplar when generating

comments. The attention mechanism in the Refine module is built

by the classic method of Bahdanau et al. [3].

Take the attention between the target comment and the input

code as an example. Specifically, for each target token 𝑦𝑖 , we use

the hidden state of its previous token ℎ
′

𝑖−1 to calculate the attention

Figure 3: The structure of the Refine module. The calcula-

tion details of the "sim" block and the "combination" block

are Equation 3 and Equation 8, respectively. The dashed

lines represent information used to initialize the decoder

and to calculate the context vector.

weights as,

𝛼𝑖 𝑗 = 𝑎(ℎ
′

𝑖−1, ℎ
𝑥
𝑗) (4)

𝛼𝑖 𝑗 =
exp{𝛼𝑖 𝑗 }∑
𝑘 exp{𝛼𝑖𝑘 }

(5)

where 𝑎 is an alignment model which scores how well the input

around position 𝑗 and the output at position 𝑖 match. We use a
Multi-Layer Perception (MLP) [32] unit as the alignment model.

Then the context vector 𝑐𝑥𝑖 is computed as a weighted sum of all

hidden states of the input code:

𝑐𝑥𝑖 =
∑
𝑗

𝛼𝑖 𝑗ℎ
𝑥
𝑗 (6)

The attention weights and context vector for the exemplar 𝑐𝑟𝑖 and

the AST traversal sequence 𝑐𝑡𝑖 can be computed in the same way.

3.2.3 Decoder. The purpose of the decoder is to generate the target

comment 𝑦. When generating the 𝑡-th token in the comment, the

decoder first uses an LSTM to get the 𝑡-th hidden state ℎ
′

𝑡 :

ℎ
′

𝑡 = LSTM(ℎ
′

𝑡−1, 𝑦𝑡−1) (7)

The initial state of the decoder is a combination of the input code

representation and the last hidden state of the exemplar:

ℎ
′

0 = ℎ𝑐 ∗ (1 − 𝑠𝑖𝑚) + ℎ𝑟−1 ∗ 𝑠𝑖𝑚 (8)

where ℎ𝑐 is the feature vector of the input code, which is obtained
by concatenating the last hidden state of x and the last hidden state

of t and performing an affine transformation:

ℎ𝑐 =𝑊𝑐 [ℎ
𝑥
−1;ℎ

𝑡
−1] + 𝑏𝑐 (9)

where𝑊𝑐 and 𝑏𝑐 are trainable parameters. The purpose of the com-
bination in Eqn. 8 is that if the input code is different semantically

from the similar code, that is, the value of the similarity score is

low, then the decoder should pay more attention to the content of

353

the input code. We can obtain the context vector 𝑐𝑡 in the same
way:

𝑐
′

𝑡 = (𝑊𝑐 [𝑐
𝑥
𝑡 ; 𝑐

𝑡
𝑡] + 𝑏𝑐) ∗ (1 − 𝑠𝑖𝑚) + 𝑐𝑟𝑡 ∗ 𝑠𝑖𝑚 (10)

Then the probability of a token 𝑦𝑡 is conditioned on the context
vector 𝑐𝑡 and its previous generated tokens 𝑦1,...,𝑦𝑡−1, i.e.,

𝑝 (𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1, 𝑥, 𝑡, 𝑠, 𝑟) = 𝑔(𝑦𝑡−1, ℎ
′

𝑡 , 𝑐𝑡) (11)

where 𝑔 is a MLP layer with the softmax activation function.

The training objective of the Refine module is to minimize the

cross-entropy:

𝐻 (𝑦) = −
1

𝑁

𝑁∑
𝑖

∑
𝑗

log𝑝 (𝑦𝑖𝑗 |𝑦
𝑖
< 𝑗 , 𝑥

𝑖 , 𝑡𝑖 , 𝑠𝑖 , 𝑟 𝑖) (12)

where𝑁 is the total number of training samples, and𝑦𝑖𝑗 means the 𝑗-

th token in the 𝑖-th sample. Through gradient descent optimization
methods, the parameters of the Refine module can be estimated.

During inference, we use a beam search [38] to generate comments.

Specifically, the decoder generates the comment token by token

from left-to-right while keeping 𝐵-best candidates at each time step
where 𝐵 is the beam size.

4 EXPERIMENT SETUP

Dataset. We evaluate our approach on the dataset provided by

LeClair et al. [25]. The original dataset comes from Lopes et al. [29],

containing 5.1 million Java methods from the Sourcerer repository.

Because the original dataset contains a large number of samples

that are not suitable for evaluating neural models, such as repeated

and auto-generated code, LeClair et al. preprocessed the data.

More specifically, they first extracted Java methods and com-

ments from the code repository. Assuming the first sentence of the

Javadoc summarizes the method’s behavior [24], the authors ex-

tracted the first sentence or line from the Javadoc as a comment of

the method and filtered out non-English samples. Considering that

the auto-generated and duplicate code (due to name changes, code

cloning, etc.) will have a negative impact on neural model evalua-

tion, the authors removed these samples using heuristic rules [36]

and added unique, auto-generated code to the training set to ensure

that no testing was performed on these samples. After splitting

camel case and underscore tokens, removing non-alpha charac-

ters, and setting to lower case, the authors divided the dataset by

project into training, validation and test set, meaning that all meth-

ods in one project are grouped into one category. They argue that

the preprocessing of the dataset is necessary for evaluating the

performance of neural models. Without these preprocessing, the

evaluation results of neural models will be inflated. For example,

in the ICPC’18 paper [14], the reported BLEU score of DeepCom is

about 38, while the result on this dataset is only about 19.

After getting the processed dataset, the authors used the srcml [5]

tool to parse the source code into AST, and traversed the AST

through the SBT [14] method to convert the AST into a token

sequence. To simulate more complicated scenarios, such as missing

keywords in the source code (due to poorly-written code or some

scenarios with only byte code), they replaced all tokens in the source

code with a <OTHER> token and got a token sequence called SBT-

AO for SBT AST only. In such cases, only the structure of AST is

Table 1: Statistics of datasets

Dataset Train Valid Test

Count 1,954,807 104,273 90,908

Avg. tokens in comment 7.594 7.710 7.654

Avg. tokens in code 29.67 29.68 30.17

Avg. tokens in SBT-AO 218.3 217.3 222.8

(a) Code length distribution (b) Comment length distribution

Figure 4: Length distribution of test data

preserved. Then the authors created two datasets to evaluate the

performance of neural models.

• The standard dataset contains three elements for each sam-

ple, a code sequence of the Javamethod, an SBT-AO sequence

of Java method, and a comment.

• The challenge dataset contains two elements for each sam-

ple, an SBT-AO sequence of Java method, and a comment.

The challenge dataset is used to evaluate the performance of neural

models when only the AST structure is available. In our experimen-

tal setup, the retrieval corpus is constructed using source code token

sequence and comment pairs from the training set. For training

and evaluation, we select the second-ranked (since the first-ranked

similar code is itself) and top-ranked retrieved code as the similar

code, respectively. The statistical results of the dataset are shown

in Table 1. Figure 4 shows the length distribution of source code

and comment on the test data.

Training Details. Our model is implemented based on the Tensor-

flow framework. We set token embeddings and LSTM states to 100

dimensions and 256 dimensions respectively. The out-of-vocabulary

tokens are replaced by UNK. To maximize the utilization of GPU

memory, we set the batch size to 256. We choose the widely-used

stochastic gradient descent to optimize all parameters with the ini-

tial learning rate of 0.2. The learning rate is decayed with a factor of

0.95 every epoch. To mitigate overfitting, we use dropout with 0.2.

And to prevent exploding gradient, we clip the gradients norm by

5. According to the statistics of the dataset in Figure 4, we limit the

maximum length of the encoder LSTM to 100 and the maximum

length of the decoder to 13. Training runs for about 20 epochs, and

the best parameters are selected according to the performance of

the validation set. During the test, the beam size 𝐵 is set to 5. Each

experiment is run three times, and the average results are reported.

We conduct our experiments on a Linux server with the NVIDIA

GTX TITAN Xp GPU with 12 GB memory.

EvaluationMetrics. Following the previous comment generation

work [14, 16, 25], we evaluate different approaches using the metric

BLEU [33]. BLEU measures the quality of generated comments and

354

can represent the human’s judgment, which calculates the similarity

between the generated comments and references. It is defined as

the geometric mean of 𝑛-grammatching precision scores multiplied

by a brevity penalty to prevent very short generated sentences:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · exp(
𝑁∑
𝑛=1

𝑤𝑛 log𝑝𝑛) (13)

where 𝑝𝑛 is the 𝑛-gram matching precision scores, 𝑁 is set to 4

in our paper, and 𝐵𝑃 is a brevity penalty to prevent very short

generated sentences. BLEU score ranges from 0 to 100; the higher

the score, the more the candidate correlates to the reference. This

evaluation metric is also widely used in various tasks of automatic

software engineering. Liu et al. [27] introduced BLEU to evaluate the

quality of the generated commit message. Gu et al. [10] employed

it to evaluate the accuracy of the generated API sequence. Jiang et

al. [19] exploited it to evaluate the generated summaries for commit

messages. Their experiments show that it is reasonable to use BLEU

to evaluate the quality of comments. In our experiments, we report

a composite BLEU score in addition to BLEU1 through BLEU4.

5 RESULTS

To evaluate our approach, in this section, we will answer the fol-

lowing research questions:

• RQ1: How does the Re2Com perform compared to the state-

of-the-art neural models?

• RQ2: How effective is the exemplar to all neural models?

• RQ3: How does the Re2Com perform compared to the IR

methods?

In the challenge dataset, all models have no source code tokens

as input, which is an experimental scenario to evaluate the ability

of the model to use limited information. In contrast, the standard

dataset is close to the real-world scenario where all the information

of the source code is available. Hence we evaluate our approach

and all baselines on the standard dataset in this section and discuss

the experimental results on the challenge dataset in the Section 6.

5.1 RQ1: Re2Com vs. Neural Baselines

5.1.1 Baseline. To answer this research question, we compare our

approach to four state-of-the-art neural methods.

• CODE-NN [16] is the first deep learning model and the first

end-to-end encoder-decoder framework for comment gener-

ation task. It encodes the source code sequence into token

embeddings, then uses an LSTM as a decoder to generate

comments, and employs the attention mechanism to intro-

duce information on the encoder side. Note that CODE-NN

only uses token embedding as the encoder, not the LSTM.

• attendgru [25] is a standard attentional seq2seq model,

where the encoder and the decoder are both gated recur-

rent unit (GRU). GRU is similar to LSTM and is a variant

of RNN. For a fair comparison, we replace GRU with LSTM

in the model. Hence, the difference between this model and

CODE-NN is whether the encoder uses an RNN.

• ast-attendgru [25] is also an attentional seq2seq model. Dif-

ferent from attendgru, it introduces the structure information

of the source code and uses a new encoder to process the

Table 2: The performance of our model compared with neu-

ral baselines.

Methods Params B B1 B2 B3 B4

CODE-NN 36.3M 12.54 32.23 14.71 8.558 6.090

DeepCom 37.9M 14.21 31.88 16.02 10.10 7.491

attendgru 37.7M 19.42 39.00 22.02 14.87 11.27

ast-attendgru 39.7M 19.67 39.32 22.19 14.98 11.42

Re2Com 28.4M 24.42 41.69 25.78 19.70 16.79

traversal sequence of AST. It concatenates the information

from the two encoders as input to the decoder and generates

comments. In our experiments, we used LSTMs as encoders

for a fair comparison.

• DeepCom [14] is a seq2seq model that uses LSTMs as the

encoder and the decoder, and also utilizes the attention

mechanism. It is the first comment generation model using

AST’s traversal sequence as input and proposed the traversal

method SBT.

We set the embedding size and LSTM states of all baselines to

256 dimensions, which can ensure that the number of Re2Com’s

parameters is less than the number of baselines’ parameters. As in

the ICSE’19 paper [25], we did not compare our model with other

baselines in the field of natural language processing, because the

tricks introduced by thosemodels wouldmake it difficult to compare

exactly which part of the model played a key role. Compared with

the above four baselines, it can not only explain the effectiveness

of our model but also show that the components of our model are

helpful.

5.1.2 Results. We calculate the gap between the comments gener-

ated by different methods and the ground truth. The experimental

results are shown in Table 2. The BLEU scores of the best baseline

ast-attendgru are comparable to those reported in the study [25],

although we made some modifications to their encoders. This re-

sult shows that the performance difference of an LSTM and a GRU

on this task is very limited. Although ast-attendgru introduces

structural information of the source code compared to attendgru,

it does not substantially improve the results. The phenomenon

also appears in the paper [25], explaining that after excluding cus-

tom identifiers in the AST, the structural information of the source

code has limited help in generating comments, and the information

contained in the token sequence of source code is sufficient. The

performance of DeepCom is much lower than the results in [14],

indicating that their data preprocessing has potential problems. The

auto-generated and duplicate code has a great negative impact on

the experimental results. The similar conclusion was reached in

the Allamanis’s paper [1]. The difference between DeepCom and

attendgru is only in the input information, while the former is about

5 points worse than the latter. One reason is that the AST’s traversal

sequence processed by DeepCom is about 7 times longer than the

token sequence processed by attendgru, which might contain more

useless and redundant information. Koehn and Knowles [23] found

that encoder-decoder frameworks have low generation quality on

very long sentences. From Table 2, we also notice that CODE-NN

performs worst compared with other methods since it does not use

an RNN to process the token sequence, which makes it unable to

grasp the semantic information of the source code context. From the

355

Table 3: Effectiveness of exemplar on all neural methods.

Methods Params B B1 B2 B3 B4

CODE-NN + E. 63.0M 14.72 33.14 16.39 10.65 8.120

DeepCom + E. 64.4M 18.90 33.51 19.21 15.50 13.32

attendgru + E. 64.2M 22.60 39.01 23.48 18.17 15.68

ast-attendgru + E. 66.2M 22.81 39.55 23.77 18.29 15.74

Re2Com 28.4M 24.42 41.69 25.78 19.70 16.79

results, we can also observe that BLEU1 to BLEU4 are in descending

order. BLEU1 is very high compared to BLEU4 on all models, reveal-

ing that the matching accuracy of the 4-grams between comments

generated by neural networks and gold references is slightly lower.

From the table, we can see that Re2Com substantially outper-

forms all neural methods on the standard dataset, and improves

ast-attendgru (the best baseline) by 24.15%. In particular, the BLEU4
improvement achieves by Re2Com is 47.02%, which is not only due

to the similar code retrieved and the exemplar providing abundant

information for comment generation but also due to the ability of

the Refine module to integrate the code and the exemplar. Since

the word vectors of Re2Com are 100-dimensional, the number of

parameters of Re2Com is the smallest among all methods. However,

Re2Com can still achieve the highest BLEU score. In addition, we

evaluate Re2Com with completely random exemplars on the test

set. The model achieves 14.61 BLEU score, which shows that the

improved performance of Re2Com is due to the exemplar.

For a code snippet in the test set, the Retrieve module averagely

takes 48.91ms to retrieve the most similar code, and the Refine mod-

ule takes an average of 99.27ms to generate comments. However,

the best baseline ast-attendgru takes 199.1ms to generate a com-

ment for a given sample. Therefore, our model not only improves

the results, but also improves efficiency.

5.2 RQ2: Effectiveness of Exemplar

We further explore whether exemplar is effective for all neural

models, i.e., when the neural model becomes simple, or when the

model does not have the structure information of the source code,

will the exemplar still be effective? To reach a conclusion, we first

add the exemplar as input on all baselines. Then we apply the

similarity score (Eqn. 3) and the combination block (Eqn. 8) in our

Refine module to each baseline for calculating the initial state and

context vector of the decoder. Finally, we train each baseline, and

the evaluation results are shown in Table 3.

It can be seen from the experimental results that exemplar can

bring stable improvement to all neural models. For all of the baseline

models, their BLEU scores are increased after adding the exemplar.

Observing the improvement of BLEU1 to BLEU4, we can find that

the exemplar has the biggest improvement on BLEU4 on all models.

This indicates that retrieved exemplars improve the accuracy of

continuous tokens in predicted comments in the neural network,

which also effectively improves the quality of generated comments.

In addition, the number of trainable parameters of Re2Com is less

than all the methods. Exemplar’s improvement of all the models

also shows that the exemplar is orthogonal to the tricks used by

other deep models, and can bring independent improvements. Take

ast-attendgru and DeepCom as examples. We can see from the table

that there is still a certain gap between the two models after adding

Table 4: The performance of our model compared with IR

baselines.

Methods B B1 B2 B3 B4

Retrieve Module 18.04 32.06 17.83 14.39 12.87

LSI 17.19 31.38 17.05 13.48 12.07

VSM 17.76 31.91 17.52 14.02 12.70

NNGen 18.89 33.48 18.86 14.99 13.44

Re2Com 24.42 41.69 25.78 19.70 16.79

exemplars, which is caused by the token sequence of the source

code as an input of ast-attendgru. Overall, experimental results

show that the exemplar is effective for all neural models generating

comments, and still, our proposed model Re2Com shows the best

performance.

5.3 RQ3: Re2Com vs. IR Baselines

5.3.1 Baseline. To answer this research question, we compare our

approach with four IR-based baselines.

• Retrieve Module is a component of Re2Com, whose details

are described in Section 3.1. We use the retrieved exemplar

as a comment directly.

• Latent Semantic Indexing (LSI) is an IR technique to ana-

lyze the semantic relationship between terms in documents,

which is used by Haiduc et al. [11] to extract important

terms in source code. For a given code snippet, we use LSI

to retrieve the similar code from the training set and use its

comment as a target. The similarity is the cosine distance of

the 500-dimensional LSI vector of the code.

• Vector Space Model (VSM) represents the source code as

a feature vector and is applied to some IR-based comment

generation methods [8, 11]. We represent the source code as

a vector using Term Frequency-Inverse Document Frequency

(TF-IDF) and use cosine similarity to retrieve the comment

of the most similar code from the training set.

• NNGen [27] is an approach for producing commit messages

based on nearest neighbors. It first encodes code changes

into a form of "bag of words", then uses the cosine distance

to select the closest 𝑘 code changes, and finally chooses the
message of the code change with the highest BLEU score as

the final result. We replace code changes with code snippets,

leverage this method to generate comments, and set 𝑘 as 5.

5.3.2 Results. We evaluate the quality of comments generated by

different IR-based methods, and the results are shown in Table 4.

Although our Retrieve module achieves high BLEU scores, it does

not perform as well as Re2Com, which proves the importance of the

Refine module. Besides, the performance of the Retrieve module is

not substantially different from that of common IR-based methods,

illustrating that our Retrieve module is reasonable and effective.

LSI and VSM leverage different methods (LSI vectors and TF-IDF)

to represent source code as vectors, but their performance is similar.

NNGen chooses the comments with the highest BLEU score and

thus performs better than other IR-based methods. Note that the

IR-based baselines perform very well on BLEU4, even surpassing

the neural network-based baselines in Table 2, i.e., the IR-based

methods can achieve a high matching precision score of 4-gram,

356

Table 5: The results (standard deviation in parentheses) of

human evaluation

Methods Informativeness Naturalness Similarity

NNGen 1.555 (1.31) 3.560 (0.70) 1.205 (1.37)

ast-attendgru 2.575 (0.93) 3.425 (0.86) 2.215 (1.11)

Re2Com 2.930 (1.06) 3.820 (0.64) 2.640 (1.29)

indicating that these comments are informative and have a good

readability. The phenomenon also explains why Re2Com can im-

prove more on BLEU4. Surprisingly, IR methods outperform some

neural-based methods on BLEU scores, such as CODE-NN and

DeepCom, showing that in more stringent and more realistic sce-

narios (no duplicate and auto-generated code), neural networks are

not necessarily better than IR methods. Combining the advantages

of neural networks and traditional methods, our Re2Com achieves

the best performance.

5.4 Human Evaluation

Although BLEU scores can evaluate the gap between the gener-

ated comments and references, it cannot truly reflect the seman-

tic similarity. Therefore, we perform a human evaluation to mea-

sure the quality of comments generated by NNGen, Re2Com, and

ast-attendgru on the standard dataset. We follow the previous

work [15, 16, 27, 28] to design a human evaluation, and measure

three aspects, including the similarity of generated comments and

references, naturalness (grammaticality and fluency of the gener-

ated comments) and informativeness (the amount of content carried

over from the input code to the generated comments, ignoring flu-

ency of the text). Specifically, we invite 12 volunteers with 3-5 years

of Java development experience and excellent English ability for 30

minutes each to evaluate the generated comments in the form of a

questionnaire. Similar to [15], we randomly select 300 prediction

results and their references from the test set (100 from NNGen,

100 from Re2Com and 100 from ast-attendgru). The 300 samples

are then evenly divided into six groups, with each questionnaire

containing one group. We randomly list the comment pairs and the

corresponding input code on the questionnaire and remove their la-

bels to ensure that participants cannot distinguish which comment

is generated by NNGen, Re2Com, or ast-attendgru. Each participant

is asked to rate each sample from the above three aspects. All three

scores are integers, ranging from 0 to 4. Each group is evaluated by

two volunteers, and the score of a pair of comments is the average

of two evaluations. Participants are allowed to search the Internet

for related information and unfamiliar concepts.

The evaluation results are shown in Table 5. Re2Com surpasses

NNGen and ast-attendgru in three aspects. In particular, the NNGen

can generate more fluent comments than the ast-attendgru, because

its comments are all retrieved from the training set. The difference

in standard deviation of the three methods is very small, indicating

that their scores are about the same degree of concentration. Inter-

estingly, the scores of infomativeness of all three models are higher

than those of similarity, indicating that the generated comments are

more relevant to the input code than to the references. Since some

references contain information about the context of Java methods,

such as member variables in the class, it is not possible to generate

Table 6: The number of correctly generated low-frequency

tokens

Methods ≤10 ≤20 ≤50 ≤100

Reference 12,145 15,253 21,622 28,425

ast-attendgru 262 624 1,575 2,801

Re2Com 422 1,093 2,808 4,886

Figure 5: BLEU scores for different code and comment

lengths.

the information for all three models with only Java methods as

input.

6 DISCUSSION

In this section, we further compare Re2Com and the best base-

line ast-attendgru. Then we discuss situations where our method

performs well and threats to validity.

6.1 Performance on Low-frequency Tokens

94.8% of tokens in the comment vocabulary of the standard dataset

have a frequency of less than 100. As we described in Section 1

and 2, previous methods perform poorly on low-frequency tokens.

To evaluate the results of the Re2Com on low-frequency tokens, we

collect all correctly generated tokens that appear in both prediction

and reference on the test set, calculate the frequency of these tokens

on the training set, and count the tokens with frequencies less than

10, 20, 50, and 100. We conduct the same analysis on ast-attendgru

and count the number of low-frequency tokens in the reference on

the test set. Table 6 shows the statistical results on low-frequency

tokens. The results show that Re2Com can predict more correct low-

frequency tokens than ast-attendgru, which indicates that Re2Com

can tackle the problem of predicting low-frequency tokens. The abil-

ity to predict more tokens that appear less frequently also indicates

that our Re2Com has better generalization capabilities.

6.2 Performance for Different Lengths

Here, we further analyze the prediction accuracy of the Re2Com

and the ast-attendgru on different code and comment lengths. We

calculate the BLEU score for each sample on the test set and then

average the scores by length. Figure 5 shows the evaluation results.

From the figures, we can observe that the Re2Com outperforms

the ast-attendgru with different code and comment lengths. When

the code and comments are very long, the performance of both

models decreases to some extent, but Re2Com is still better than

ast-attendgru. The improvement of Re2Com is stable on code and

comments of different lengths.

357

Table 7: The performance of ourmodel and ast-attendgru on

the challenge dataset

Methods B B1 B2 B3 B4

ast-attendgru 9.334 25.79 11.05 6.027 4.418

Re2Com 10.50 27.41 12.26 7.014 5.182

Table 8: Examples of generated comments

Case ID Example

1

public void resume () {

Enumeration e = actuators.elements ();

while (e.hasMoreElements ()) {

((Actuator) (e.nextElement ())).resume ();

}

e = sensors.elements ();

while (e.hasMoreElements ()) {

((Sensor) (e.nextElement ())).resume ();

}

}
Human-written: resume all actuators and sensors in this mechanism
NNGen: suspend all actuators and sensors on a mechanism
ast-attendgru: resumes all actuators

Re2Com: resume all actuators and sensors in this mechanism

2

public double function(double x, double y) {

if (y >= 0) {

return Math.pow(x, y);

}

else {

return 1/Math.pow(x, -y);

}

}
Human-written: calculates x to the power of y
NNGen: get the norm of the vector squared
ast-attendgru: returns the function value of the x y coordinate

Re2Com: method for x to the power of y

3

public boolean equals(String rawSQL) {

return TextUtil.removeLineBreaks(rawSQL).equals(

_singleLineText);

}
Human-written: check if the current element matches a given sql string
NNGen: get the value of sql text
ast-attendgru: returns true if the given sql string is equal to the given

Re2Com: check if the current element matches a given sql string

6.3 Performance on the Challenge Dataset

Here, we evaluate the Re2Com and the ast-attendgru on the chal-

lenge dataset. Because source code token information is not avail-

able in the dataset, we use the Retrieve module to retrieve the most

similar SBT-AO and treat its comment as an exemplar. The results

are shown in Table 7. From the table, we can see that the BLEU

score of ourmodel is improved by 12.49% compared to ast-attendgru.

However, compared to the results on the standard dataset, we find

that our Re2Com on the challenge dataset does not perform as well

as on the standard dataset, which is due to the limitation of the

Retrieve module. The Retrieve module calculates the token-level

similarity, and we remove all tokens from in the code to obtain

the SBT-AO (details are in Section 4), resulting in poor retrieval

results for similar SBT-AO. Therefore, Re2Com does not perform

well on the challenge dataset. But in the absence of code as input,

it is very difficult to achieve such an improvement, and when com-

paring Re2Com with ast-attendgru, it still proves that the Re2Com

is helpful for generating comments.

6.4 Qualitative Analysis and Visualization

We perform a qualitative analysis on the generated comments. We

present three Java methods with its comments from the test set and

the comments generated by different methods, as shown in Table 8.

We can see from the table that, thanks to the useful information

provided by exemplars, the comments generated by the Re2Com

and the human-written comments are very close in semantics, and

the Re2Com performs better than other methods.

6.5 Threats to Validity

One threat to validity is that we only evaluated our framework

on a Java dataset. Although Java may not be representative of all

programming languages, the dataset is large and safe enough to

show that our model is effective. Besides, the Re2Com can be easily

applied to comment generation for other programming languages.

The second threat to validity is our human evaluation.We cannot

guarantee that each score assigned to every comment pair is fair. To

mitigate this threat, we evaluate each comment pair by two human

evaluators, and we use the average score of the two evaluators as

the final score.

Another threat to validity is that the Retrieve module uses the

lexical-level similarity of the source code, which may cause the

code retrieved by the module to be semantically dissimilar. We

recommend increasing the scale of the retrieval corpus to avoid this

threat. However, in the Re2Com, we introduce the Refine module

to calculate the semantic similarity and decide whether to use the

exemplar based on the similarity score.

7 RELATEDWORK

Code Summarization.Automatic comment generation approaches

vary from manually-crafted templates [30, 31, 37], IR [8, 11, 42, 43]

to neural models [14, 16, 25].

Comment generation based on manually-craft templates was

one of the common methods for generating comments. Sridhara

et al. [37] developed the Software Word Usage Model (SWUM) to

capture the occurrences of terms in source code and their linguistic

and structural relationships and then defined different templates

for different semantic segments in source code to generate readable

natural language. Moreno et al. [31] defined heuristic rules to select

relevant information in the source code, and then divided the com-

ments into four parts, and defined different text templates for each

part to generate natural language descriptions. McBurney et al. [30]

also used the SWUM model to extract the keywords in the Java

method, employed the PageRank algorithm to select the important

methods in the given method’s context, and used a template-based

text generation system to generate comments. These frameworks

have achieved good results on Java classes and methods.

IR techniques have been widely used in comment generation

task. Haiduc et al. [11] used two IR techniques, Vector Space Model

and Latent Semantic Indexing, to retrieve relevant terms from a

software corpus, and then organized these terms into comments.

Eddy et al. [8] used hierarchical PAM, a probabilistic model that

selected relevant terms from the corpus and included them to the

comments. Unlike the first two research works, Wong et al. [43]

proposed that code snippets and their descriptions on the Q&A

sites can be used to generate comments for a piece of code. They

358

used a token-based code clone detection tool SIM to detect similar

code snippets and used their comments as target comments. Wong

et al. [42] further thought that the resources of the Q&A sites were

limited and proposed to use token-based code clone detection tools

to retrieve similar code snippets from GitHub and leverage the

information obtained from their comments to generate comments.

Recently many neural networks have been proposed for com-

ment generation. With large-scale corpora for training, neural-

based approaches quickly became state-of-the-art models on this

task. Iyer et al. [16] first introduced the seq2seq model from neural

machine translation into comment generation, whose encoder is

the token embedding and decoder is an LSTM. Their model out-

performs traditional methods on C# and SQL summaries. Inspired

by the difference between natural language and programming lan-

guage, Hu et al. [14] proposed a neural model named DeepCom to

capture the structural information of source code. They proposed

a structure-based traversal method, using one LSTM to process

the AST’s traversal sequence, and the other LSTM to generate

comments for Java methods. LeClair et al. [25] proposed a neural

method to predict the comment by combining the sequence infor-

mation and structure information of the source code with two GRU

encoders. In addition, they reconstructed the benchmark dataset

for this task, removed duplicate and auto-generated code in the

dataset, and divided the dataset into training, validation, and test

by project.

Our proposed Re2Com combines the advantages of the three

methods, retrieves a similar code snippet from the training set, and

uses its comment as the exemplar to guide the neural model for

comment generation, improving performance over baselines.

Code Clone Detection. Code clone detection that measures code

similarity is a common program comprehension task in software

engineering. Existing researches mainly measure the similarity be-

tween code representation varying from lexical [20, 35] to syntacti-

cal [18] representations. Specifically, CCFinder [20] and Sourcer-

erCC [35] are code clone detection tools based on bag of tokens,

while DECKARD [18] detects code clones based on AST. Recently,

deep learning models are proposed to learn the implicit similarity

between code snippets [4, 26, 40, 41, 45, 46]. These methods use a

variety of neural networks: RtNN [41], DNN [26, 46], ASTNN [45]

and AST-based RNN [4, 40] to represent source code as feature

vectors, and use feature vectors to calculate the similarity between

source code snippets. Although we can use deep learning-based

code clone detection tools to retrieve similar code snippets, these

tools need to be trained on the labeled dataset. In our Retrieve

module, we prefer to use a lightweight search engine and then

exploit the Refine module to correct the retrieved exemplar. There-

fore, we argue that the similarity at the lexical level is sufficient to

find similar code snippets to assist in comment generation, and the

experimental results also prove our idea.

8 CONCLUSION

In this paper, we propose an exemplar-based comment generation

framework named Re2Com that takes advantage of three types of

methods based on neural networks, templates, and IR. Our frame-

work contains two modules, a Retrieve module for retrieving the

most similar code snippet, and a Refine module that uses the com-

ment of the similar code snippet as an exemplar to generate a target

comment. In order to verify the effectiveness of our framework,

we evaluated the Re2Com on a large-scale Java method dataset.

The experimental results show that the Re2Com has a substantial

improvement over the neural-based baselines and the IR-based base-

lines. Further analysis of the experimental results shows that the

Re2Com performs well not only on low-frequency tokens but also

on code and comments of different lengths. In future work, we plan

to explore the impact of more complex code retrieval techniques

on the Re2Com.

ACKNOWLEDGMENTS

This research is supported by the National Key R&D Program

under Grant No. 2018YFB1003904, the National Natural Science

Foundation of China under Grant Nos. 61832009, 61620106007 and

61751210, and the Australian Research Council’s Discovery Early

Career Researcher Award (DECRA) funding scheme (DE200100021).

REFERENCES
[1] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine

learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, Athens, Greece, October 23-24, 2019. 143–153. https:
//doi.org/10.1145/3359591.3359735

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.
2018. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.
Surv. 51, 4 (2018), 81:1–81:37. https://doi.org/10.1145/3212695

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. http://arxiv.org/abs/1409.0473

[4] Lutz Büch and Artur Andrzejak. 2019. Learning-Based Recursive Aggregation of
Abstract Syntax Trees for Code Clone Detection. In 26th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.).
IEEE, 95–104. https://doi.org/10.1109/SANER.2019.8668039

[5] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2011. Light-
weight Transformation and Fact Extraction with the srcML Toolkit. In 11th
IEEE Working Conference on Source Code Analysis and Manipulation, SCAM 2011,
Williamsburg, VA, USA, September 25-26, 2011. 173–184. https://doi.org/10.1109/
SCAM.2011.19

[6] Thomas A. Corbi. 1989. Program Understanding: Challenge for the 1990s. IBM
Systems Journal 28, 2 (1989), 294–306. https://doi.org/10.1147/sj.282.0294

[7] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia Marçal de Oliveira.
2005. A study of the documentation essential to software maintenance. In Pro-
ceedings of the 23rd Annual International Conference on Design of Communication:
documenting & Designing for Pervasive Information, SIGDOC 2005, Coventry, UK,
September 21-23, 2005. 68–75. https://doi.org/10.1145/1085313.1085331

[8] Brian P. Eddy, Jeffrey A. Robinson, Nicholas A. Kraft, and Jeffrey C. Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In IEEE 21st International Conference on Program Comprehension, ICPC 2013, San
Francisco, CA, USA, 20-21 May, 2013. 13–22. https://doi.org/10.1109/ICPC.2013.
6613829

[9] R. K. Fjeldstad and W. T. Hamlen. 1982. Application program maintenance study
- reports to our respondents.

[10] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631–642. https://doi.org/10.1145/2950290.2950334

[11] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In 17th Working Conference on Reverse Engineering, WCRE 2010, 13-16 October
2010, Beverly, MA, USA. 35–44. https://doi.org/10.1109/WCRE.2010.13

[12] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar T. De-
vanbu. 2016. On the naturalness of software. Commun. ACM 59, 5 (2016), 122–131.
https://doi.org/10.1145/2902362

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

359

[14] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension,
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018. 200–210. https://doi.org/10.
1145/3196321.3196334

[15] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1–39.

[16] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. https://www.aclweb.
org/anthology/P16-1195/

[17] Lin Jiang, Haiwen Liu, and He Jiang. 2019. Machine Learning Based Recommen-
dation of Method Names: How Far are We. 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2019), 602–614.

[18] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007. 96–105. https://doi.org/10.1109/ICSE.2007.30

[19] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massi-
miliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 135–146.
https://doi.org/10.1109/ASE.2017.8115626

[20] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28, 7 (2002), 654–670. https://doi.org/10.1109/
TSE.2002.1019480

[21] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. 2005. An
empirical study of code clone genealogies. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005. 187–196. https://doi.org/10.1145/1081706.1081737

[22] A. J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks. IEEE Trans. Software Eng. 32, 12
(2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[23] Philipp Koehn and Rebecca Knowles. 2017. Six Challenges for Neural Machine
Translation. In Proceedings of the First Workshop on Neural Machine Translation,
NMT@ACL 2017, Vancouver, Canada, August 4, 2017. 28–39. https://www.aclweb.
org/anthology/W17-3204/

[24] Douglas Kramer. 1999. API documentation from source code comments: a case
study of Javadoc. In Proceedings of the 17th annual international conference on
Documentation, SIGDOC 1999, New Orleans, Louisiana, USA, September 12-14, 1999.
147–153. https://doi.org/10.1145/318372.318577

[25] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 795–806. https://doi.org/10.1109/ICSE.2019.00087

[26] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara G. Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2017,
Shanghai, China, September 17-22, 2017. 249–260. https://doi.org/10.1109/ICSME.
2017.46

[27] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018. 373–384. https://doi.org/10.1145/3238147.3238190

[28] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Au-
tomatic Generation of Pull Request Descriptions. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. 176–188. https://doi.org/10.1109/ASE.2019.00026

[29] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010. UCI Source Code Data
Sets. https://www.ics.uci.edu/~lopes/datasets/

[30] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Sum-
marization of Context for Java Methods. IEEE Trans. Software Eng. 42, 2 (2016),
103–119. https://doi.org/10.1109/TSE.2015.2465386

[31] LauraMoreno, Jairo Aponte, Giriprasad Sridhara, AndrianMarcus, Lori L. Pollock,
and K. Vijay-Shanker. 2013. Automatic generation of natural language summaries
for Java classes. In IEEE 21st International Conference on Program Comprehension,
ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. 23–32. https://doi.org/10.
1109/ICPC.2013.6613830

[32] Sankar K. Pal and Sushmita Mitra. 1992. Multilayer perceptron, fuzzy sets,
and classification. IEEE Trans. Neural Networks 3, 5 (1992), 683–697. https:
//doi.org/10.1109/72.159058

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. 311–318. https://www.aclweb.org/anthology/P02-
1040/

[34] Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention
Model for Abstractive Sentence Summarization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. 379–389. https://doi.org/10.18653/v1/d15-1044

[35] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016. 1157–1168. https://doi.org/10.1145/2884781.2884877

[36] Kento Shimonaka, Soichi Sumi, Yoshiki Higo, and Shinji Kusumoto. 2016. Identi-
fying Auto-Generated Code by Using Machine Learning Techniques. 2016 7th
International Workshop on Empirical Software Engineering in Practice (IWESEP)
(2016), 18–23.

[37] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE. ACM, 43–52.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3104–3112. http://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks

[39] Oriol Vinyals and Quoc V. Le. 2015. A Neural Conversational Model. CoRR
abs/1506.05869 (2015). arXiv:1506.05869 http://arxiv.org/abs/1506.05869

[40] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 3034–3040. https://doi.org/10.24963/ijcai.2017/423

[41] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. 87–98. https://doi.org/10.1145/2970276.
2970326

[42] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining existing source
code for automatic comment generation. In 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015. 380–389. https://doi.org/10.1109/SANER.2015.7081848

[43] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013. 562–567. https://doi.org/10.1109/ASE.
2013.6693113

[44] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and
Shanping Li. 2018. Measuring Program Comprehension: A Large-Scale Field
Study with Professionals. IEEE Trans. Software Eng. 44, 10 (2018), 951–976.
https://doi.org/10.1109/TSE.2017.2734091

[45] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 783–794. https://doi.org/10.
1109/ICSE.2019.00086

[46] Gang Zhao and Jeff Huang. 2018. DeepSim: deep learning code functional simi-
larity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 141–151.
https://doi.org/10.1145/3236024.3236068

360

